Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Data ; 10(1): 367, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20232780

ABSTRACT

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 epidemiological data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, vaccine data, and key demographic characteristics.


Subject(s)
COVID-19 , Humans , Air Pollution , COVID-19/epidemiology , Pandemics , Environment
2.
Geohealth ; 7(3): e2022GH000727, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2266011

ABSTRACT

Brazil has been severely affected by the COVID-19 pandemic. Temperature and humidity have been purported as drivers of SARS-CoV-2 transmission, but no consensus has been reached in the literature regarding the relative roles of meteorology, governmental policy, and mobility on transmission in Brazil. We compiled data on meteorology, governmental policy, and mobility in Brazil's 26 states and one federal district from June 2020 to August 2021. Associations between these variables and the time-varying reproductive number (R t ) of SARS-CoV-2 were examined using generalized additive models fit to data from the entire 15-month period and several shorter, 3-month periods. Accumulated local effects and variable importance metrics were calculated to analyze the relationship between input variables and R t . We found that transmission is strongly influenced by unmeasured sources of between-state heterogeneity and the near-recent trajectory of the pandemic. Increased temperature generally was associated with decreased transmission and increased specific humidity with increased transmission. However, the impacts of meteorology, policy, and mobility on R t varied in direction, magnitude, and significance across our study period. This time variance could explain inconsistencies in the published literature to date. While meteorology weakly modulates SARS-CoV-2 transmission, daily or seasonal weather variations alone will not stave off future surges in COVID-19 cases in Brazil. Investigating how the roles of environmental factors and disease control interventions may vary with time should be a deliberate consideration of future research on the drivers of SARS-CoV-2 transmission.

3.
IJID Reg ; 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2239896

ABSTRACT

Background: The COVID-19 pandemic has caused societal disruption globally and South America has been hit harder than other lower-income regions. This study modeled effects of 6 weather variables on district-level SARS-CoV-2 reproduction numbers (R t ) in three contiguous countries of Tropical Andean South America (Colombia, Ecuador, and Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. Methods: Daily time-series data on SARS-CoV-2 infections were sourced from health authorities of the three countries at the smallest available administrative level. R t values were calculated and merged by date and unit ID with variables from a Unified COVID-19 dataset and other publicly available sources for May - December 2020. Generalized additive models were fitted. Findings: Relative humidity and solar radiation were inversely associated with SARS-CoV-2 R t . Days with radiation above 1,000 KJ/m2 saw a 1.3%, and those with humidity above 50%, a 0.9% reduction in R t . Transmission was highest in densely populated districts, and lowest in districts with poor healthcare access and on days with least population mobility. Wind speed, temperature, region, aggregate government policy response and population age structure had little impact. The fully adjusted model explained 4.3% of R t variance. Interpretation: Dry atmospheric conditions of low humidity increase, and higher solar radiation decrease district-level SARS-CoV-2 reproduction numbers, effects that are comparable in magnitude to population factors like lockdown compliance. Weather monitoring could be incorporated into disease surveillance and early warning systems in conjunction with more established risk indicators and surveillance measures. Funding: NASA's Group on Earth Observations Work Programme (16-GEO16-0047).

4.
Front Public Health ; 9: 754696, 2021.
Article in English | MEDLINE | ID: covidwho-1575228

ABSTRACT

Background: Attempts to quantify effect sizes of non-pharmaceutical interventions (NPI) to control COVID-19 in the US have not accounted for heterogeneity in social or environmental factors that may influence NPI effectiveness. This study quantifies national and sub-national effect sizes of NPIs during the early months of the pandemic in the US. Methods: Daily county-level COVID-19 cases and deaths during the first wave (January 2020 through phased removal of interventions) were obtained. County-level cases, doubling times, and death rates were compared to four increasingly restrictive NPI levels. Socio-demographic, climate and mobility factors were analyzed to explain and evaluate NPI heterogeneity, with mobility used to approximate NPI compliance. Analyses were conducted separately for the US and for each Census regions (Pacific, Mountain, east/West North Central, East/West South Central, South Atlantic, Middle Atlantic and New England). A stepped-wedge cluster-randomized trial analysis was used, leveraging the phased implementation of policies. Results: Aggressive (level 4) NPIs were associated with slower COVID-19 propagation, particularly in high compliance counties. Longer duration of level 4 NPIs was associated with lower case rates (log beta -0.028, 95% CI -0.04 to -0.02) and longer doubling times (log beta 0.02, 95% CI 0.01-0.03). Effects varied by Census region, for example, level 4 effects on doubling time in Pacific states were opposite to those in Middle Atlantic and New England states. NPI heterogeneity can be explained by differential timing of policy initiation and by variable socio-demographic county characteristics that predict compliance, particularly poverty and racial/ethnic population. Climate exhibits relatively consistent relationships across Census regions, for example, higher minimum temperature and specific humidity were associated with lower doubling times and higher death rates for this period of analysis in South Central, South Atlantic, Middle Atlantic, and New England states. Conclusion and Relevance: Heterogeneity exists in both the effectiveness of NPIs across US Census regions and policy compliance. This county-level variability indicates that control strategies are best designed at community-levels where policies can be tuned based on knowledge of local disparities and compliance with public health ordinances.


Subject(s)
COVID-19 , RNA, Viral , Humans , Pandemics , Policy , SARS-CoV-2 , United States/epidemiology
5.
Geohealth ; 5(5): e2021GH000412, 2021 May.
Article in English | MEDLINE | ID: covidwho-1223061

ABSTRACT

From the heated debates over the airborne transmission of the novel coronavirus to the abrupt Earth system changes caused by the sudden lockdowns, the dire circumstances resulting from the coronavirus disease 2019 (COVID-19) pandemic have brought the field of GeoHealth to the forefront of visibility in science and policy. The pandemic has inadvertently provided an opportunity to study how human response has impacted the Earth system, how the Earth system may impact the pandemic, and the capacity of GeoHealth to inform real-time policy. The lessons learned throughout our responses to the COVID-19 pandemic are shaping the future of GeoHealth.

6.
One Health ; 12: 100243, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1171857

ABSTRACT

The COVID-19 pandemic has become one of the great historical events of the modern era, presenting a generational challenge to the world. Questions about the role of weather on SARS-CoV-2 transmission led to the gathering of scientists at an online event, the "International Virtual Symposium on Climatological, Meteorological and Environmental factors in the COVID-19 pandemic," convened on 4-6 August 2020 under the auspices of the World Meteorological Organization. This collection of papers arise from the Symposium.

7.
One Health ; 12: 100225, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1071821

ABSTRACT

Meteorological variables, such as the ambient temperature and humidity, play a well-established role in the seasonal transmission of respiratory viruses and influenza in temperate climates. Since the onset of the novel coronavirus disease 2019 (COVID-19) pandemic, a growing body of literature has attempted to characterize the sensitivity of COVID-19 to meteorological factors and thus understand how changes in the weather and seasonality may impede COVID-19 transmission. Here we select a subset of this literature, summarize the diversity in these studies' scopes and methodologies, and show the lack of consensus in their conclusions on the roles of temperature, humidity, and other meteorological factors on COVID-19 transmission dynamics. We discuss how several aspects of studies' methodologies may challenge direct comparisons across studies and inflate the importance of meteorological factors on COVID-19 transmission. We further comment on outstanding challenges for this area of research and how future studies might overcome them by carefully considering robust modeling approaches, adjusting for mediating and covariate effects, and choosing appropriate scales of analysis.

SELECTION OF CITATIONS
SEARCH DETAIL